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Monitoring energy drift with shadow Hamiltonians
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Abstract

The application of a symplectic integrator to a Hamiltonian system formally conserves the value of a modified, or

shadow, Hamiltonian defined by some asymptotic expansion in powers of the step size. An earlier article describes how

it is possible to construct highly accurate shadow Hamiltonian approximations using information readily available from

the numerical integration. This article improves on this construction by giving formulas of order up to 24 (not just up to

8) and by greatly reducing both storage requirements and roundoff error. More significantly, these high order formulas

yield remarkable results not evident for 8th order formulas, even for systems as complex as the molecular dynamics of

water. These numerical experiments not only illuminate theoretical properties of shadow Hamiltonians but also give

practical information about the accuracy of a simulation. By removing systematic energy fluctuations, they reveal

the rate of energy drift for a given step size and uncover the ill effects of using switching functions that do not have

enough smoothness.

� 2005 Published by Elsevier Inc.
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1. Introduction

For the numerical solution of Hamiltonian systems of ordinary differential equations, it is common to
monitor energy conservation as a check on accuracy. Due to the finite step size of a numerical integrator,

it is normal for the total energy to fluctuate systematically on a short time scale and to drift randomly with
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an upward bias on a very long time scale. Both the fluctuations and the random drift are acceptable if suf-

ficiently small. Unfortunately, unacceptably large random drift can be obscured by the fluctuations until a

significant fraction of the simulation has been performed. Indeed, a molecular dynamics (MD) simulation

may run on a computer for days before (unacceptable) energy drift can be observed. Somewhat remarkably

there is another similar quantity that is much better conserved – indeed, 100,000 times better for typical
MD simulations. This modified or shadow Hamiltonian 1 is a result of applying a particular style of back-

ward error analysis to numerical integrators; see [2] and references therein. Moreover, an eminently prac-

tical construction for the shadow Hamiltonian is available [3]. The contribution of this work is to present a

much more accurate and more efficient implementation and to report some very interesting experimental

findings. In particular, these findings confirm the utility of the theory and affirm the robustness of shadow

Hamiltonians. In addition, these high accuracy shadow Hamiltonians are an excellent diagnostic tool for

assessing the impact of finite step size and of computational artifacts such as switching functions.

A Hamiltonian system has the form
1 Th

differen
_x ¼ JHxðxÞ; J ¼
0 I

�I 0

� �
;

where the Hamiltonian H(x) is a scalar function of position q and conjugate momenta p, represented

collectively as x = [qTpT]T, and where the subscript x denotes differentiation.
Solving such Hamiltonian systems of equations numerically yields an approximate solution at discrete

points in time separated by an amount h, with an integrator Uh evolving values xn � x(nh) at each step

as xn+1 = Uh(x
n). An example of a numerical integrator is the leapfrog method which, for a separable Ham-

iltonian Hðq; pÞ ¼ 1
2
pTM�1p þ UðqÞ with M a diagonal mass matrix and U(q) the potential energy function,

defines the values qn+1, pn+1 (,Fn+1) in terms of the values qn,pn (,Fn) by:
pnþ1=2 ¼ pn þ 1
2
hF n;

qnþ1 ¼ qn þ hM�1pnþ1=2;

F nþ1 ¼ �Uqðqnþ1Þ;

pnþ1 ¼ pnþ1=2 þ 1
2
hF nþ1:
This formulation of the leapfrog method is often called velocity Verlet.

Generally, the most fruitful way to analyze the accuracy of a discrete approximation to a dynamical

system is to express the effect of discretization as a modification to the right-hand side vector field.

Such a modified, or shadow, vector field can be expressed uniquely as a formal expansion in powers

of the step size. The asymptotic series converges for constant coefficient linear ordinary differential

equations (for small enough step size) but generally does not converge in the nonlinear case. There
is a proof of nonconvergence in [4] for the shadow vector field for the Euler method applied to
_x ¼ x2. Nonetheless, a truncated expansion very accurately represents many features of the discrete

dynamics.

For a Hamiltonian system, the shadow vector field is that of a Hamiltonian system if and only if the

integrator is symplectic. An integrator Uh is symplectic if
Uh;xðxÞTJUh;xðxÞ ¼ J :
e use of the more descriptive term ‘‘shadow’’ rather than ‘‘modified’’ is suggested in [1]. The notion of a shadow Hamiltonian is

t from the theory of shadowing in dynamical systems, which asserts the existence of a nearby trajectory.
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The leapfrog method is an example of a symplectic integrator. If Uh is symplectic, the numerical trajectory

{xn} is, therefore, formally the solution of a Hamiltonian system with Hamiltonian
HhðxÞ ¼ HðxÞ þ hg1ðxÞ þ h2g2ðxÞ þ � � �

For the analytical solution, the Hamiltonian is a conserved quantity. For the numerical solution, it can be

shown [5,2] that there exists k = k(h) for which
H ðkÞðxnÞ � H ðkÞðx0Þ ¼ Oðe�c=hÞ for time nh 6 ec=h;
where H(k)(x) = truncation of Hh(x) just before the hk term. A nice numerical example of the exponentially

small error in conservation of the shadow Hamiltonian is given in [6]. However, because of the exponential

growth of trajectory errors with the length t of the time interval under consideration, the analytical trajec-
tory xh(t) for the Hamiltonian system with Hamiltonian H(k)(x) satisfies
xhðnhÞ � xn ¼ Oðe�c=hÞ for time nh 6 c=h only;
which for MD is not very long at all.

The truncated shadow Hamiltonian (TSH) H(k) involves analytical derivatives of H and is expensive to

compute. Nonetheless, it is possible to construct highly accurate shadow Hamiltonian approximations

using information readily available from the numerical integration. Such a possibility is presented in [3],

yielding an interpolated shadow Hamiltonian (ISH). The idea of the construction is to extend phase space

so that the new Hamiltonian �HðyÞ is homogeneous of degree 2 and to use the fact that for such a Hamil-

tonian �HðyðtÞÞ ¼ 1
2
_yðtÞTJyðtÞ, which enables �HðyÞ and hence H(x) to be evaluated from a trajectory. The

construction of these interpolated shadow Hamiltonians assumes that the integrator is obtained by splitting

the Hamiltonian, but otherwise is nearly independent of the details of the Hamiltonian system or the inte-

grator, enabling their calculation even for systems for which the truncated shadow Hamiltonians are

impractical or impossible to compute. The degree k of polynomial interpolant used in this construction

determines the order of accuracy 2k of the resulting interpolated shadow Hamiltonian H[2k], so that
H ½2k�ðxÞ ¼ HhðxÞ þ Oðh2kÞ:
Concise but complete details are given in Section 4. Another, more direct but less systematic, approach to

practical construction of shadow Hamiltonians is illustrated in [7] for the leapfrog method.

Remarkable results are obtained from interpolated shadow Hamiltonians with accuracy order as high as

24 and applied to systems as complex as the molecular dynamics of water. Interesting results are obtained
also for truncated shadow Hamiltonians with accuracy order as high as 12 and applied to systems as com-

plex as the two-dimensional Hénon–Heiles Hamiltonian.

As shown in Section 2, these experiments shed light on theoretical properties of shadow Hamiltonians.

They indicate that the conservation of the truncated and interpolated shadow Hamiltonians gets only better

as the order increases and that this is true even for a Hamiltonian that is only C1. The range of fluctuations

for the shadow Hamiltonian in the limit of high order depends on the smoothness of the potential, being

smaller for smoother potentials. For the limit of small step size, exponential convergence is observed for

molecular dynamics of water. Comparisons between truncated and interpolated shadow Hamiltonians
for simple one- and two-dimensional potentials show that conservation of interpolated shadow Hamiltoni-

ans is somewhat inferior to that of truncated shadow Hamiltonians of the same order for sufficiently high

orders.

Section 3 shows that these experiments also give practical information about the accuracy of a simula-

tion. A relatively short computation can reveal the rate of energy drift as a function of step size. In one

study, a simulation using one-sided harmonic restraints to contain molecules to a sphere exhibits occasional

sudden jumps in the interpolated shadow Hamiltonians that are many orders of magnitude greater than the

typical fluctuations. These large scale jumps coincide with collisions with the containing walls, events not
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visible in plots of the energy alone. Other simulations reveal the ill effects of using switching functions that

do not have enough smoothness, and still others explore the benefit of multiple time stepping.

Section 5 gives details of the implementation of shadow Hamiltonians. It is improved from that in [3] in

three respects: (i) coefficients are given for formulas of order up to 24 not just up to 8; (ii) these formulas are

revised to employ much more storage-efficient backward differences instead of centered differences; (iii) the
revised algorithm reduces roundoff error by a direct calculation of first and second order backward differ-

ences that avoids blatant instances of cancellation. Concerning the value of very high order, there are cases

where at least 20th order is needed to observe the behavior of the shadow Hamiltonian.

The coefficients for calculating interpolated shadow Hamiltonians up to order 24 are given in Appendix

B. These formulas are also available at URL http://bionum.cs.purdue.edu/hamiltonian in the form of C

code that forms part of the Hamiltonian solver used to obtain the results of this paper for systems other

than MD.
2. Theoretical studies

The first four subsections consider how well the shadow energy is conserved and the fifth considers
trajectory accuracy. Conservation is measured as the range maxnHh

2kðxnÞ �minnHh
2kðxnÞ, where the

Hh
2kðxnÞ are the values of the given shadow Hamiltonian at time steps Øk/2ø,Øk/2ø + 1, . . . ,nsteps � Øk/2ø with

nsteps the total number of time steps in the simulation.

2.1. Comparison between truncated and interpolated shadow Hamiltonians

Here the truncated and the interpolated shadow Hamiltonians are compared on the basis of which is

better conserved by the numerical solution. Section 2.5 considers how well analytical solutions of each

of the shadow Hamiltonian equations of motion track numerical trajectories. Both sets of experiments
show that the interpolated shadow Hamiltonian does not quite as well capture the numerics as does the

truncated shadow Hamiltonian.

The first test problem is a one-dimensional double well potential Hðq; pÞ ¼ 1
2
p2 þ 1

4
ðq2 � 1Þ2 with initial

values q(0) = 0, p(0) = 0.2.

The second test problem is the two-dimensional Hénon–Heiles Hamiltonian
Hðq; pÞ ¼ 1
2
ðp21 þ p22Þ þ 1

2
ðq21 þ q22 þ 2q21q2 � 2

3
q32Þ;
in which the first term represents kinetic energy and the second term represents potential energy U(q) with

q = [q1,q2]
T and p = [p1,p2]

T. This system exhibits chaotic behavior for energies higher than 1/12, which is

the case for the initial values of q1(0) = 1/2, q2(0) = p1(0) = p2(0) = 0 used in this study.

For simple potentials such as the double well or Hénon–Heiles, it is possible to obtain expressions for the

lower order truncated shadow Hamiltonians. This allows for comparisons to be made between these quan-

tities and the interpolated shadow Hamiltonians of corresponding orders. Truncated shadow Hamiltonians
are obtained by using Mathematica to form interpolated shadow Hamiltonians H[2k] and to gather terms in

powers of the step size h. These expressions are then truncated at the appropriate power of h to yield the

desired truncated shadow Hamiltonian. Correctness is checked by comparing these results to shadow equa-

tions obtained symbolically from first principles.

We compared the two approximate shadow Hamiltonians for both the double well potential and

Hénon–Heiles Hamiltonian for a variety of step sizes. Consistently it is observed that the interpolated sha-

dow Hamiltonian is better conserved for lower orders – probably due to the exact conservation property of

the ISH for quadratic Hamiltonians [3] – but as the order gets higher, the truncated shadow Hamiltonian is
better conserved. The ultimate superiority of the truncated shadow Hamiltonian over interpolated shadow

http://bionum.cs.purdue.edu/hamiltonian
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Hamiltonian is clearly shown in Fig. 1, which plots energy range vs. order 2k for the double well potential

for duration 1000 time units and h = 0.3, with both the truncated shadow Hamiltonian (TSH) and the inter-

polated shadow Hamiltonian on same semi-log plot. Truncated shadow Hamiltonian conservation data

are plotted as asterisks connected by solid lines, and interpolated shadow Hamiltonian conservation data

are plotted as open circles connected by dotted lines. Fig. 2 does the same for Hénon–Heiles Hamiltonian
for duration 1000 time units and step size 0.9, again with both interpolated and truncated shadow Hamil-

tonian on same plot. The interpolatory shadow Hamiltonians do relatively better here because they are ex-

act for quadratic Hamiltonians unlike any of the truncated shadow Hamiltonians, and Hénon–Heiles

Hamiltonian is more nearly quadratic than the double well potential. The number of lower orders for which

the interpolated shadow Hamiltonians are better conserved than the truncated ones is observed to decrease

as the step size decreases.

2.2. Convergence

Numerical results for the double well potential and Hénon–Heiles Hamiltonian for various step sizes are

consistent with the belief that truncated shadow Hamiltonians do not converge as the order goes to infinity.

Nonetheless, these experiments strongly suggest that accuracy gets only better with increasing order. The re-

sult which best illustrates limited convergence is shown in Fig. 2, which is a plot of energy range vs. order 2k

for Hénon–Heiles potential for h = 0.9. (Instability occurs for h just greater than 0.93.) The beginnings of a

leveling off are also apparent in the same type of plot for the double well potential with h = 0.5.

Convergence is also investigated, but only for interpolated shadow Hamiltonians, for the molecular
dynamics of a system of 125 water molecules whose atoms interact via bonded forces, acting among atoms

within the same molecule, and nonbonded forces, acting between all intermolecular atom pairs. See Appen-

dix A.2 for complete details.

The system of water molecules is simulated with a variety of step sizes and interpolated shadow Ham-

iltonians up to 24th order are evaluated. Fig. 3 shows the ISH range (in kcal/mol) vs. order 2k for both

h = 0.5 fs and h = 1.0 fs for duration 100 ps. The limiting value for large k of the range of energy fluctua-

tions is smaller when a smaller step size h is used.

Also, Figs. 1–3 illustrate how the conservation of the interpolated shadow Hamiltonians H[2k] is better
for even values k than for odd values.
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Fig. 1. Conservation of ISH (dashed) and TSH (solid) vs. order 2k for double well, h = 0.3.
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Fig. 2. Conservation of ISH (dashed) and TSH (solid) vs. order 2k for Hénon–Heiles, h = 0.9.
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Fig. 3. Conservation of ISH vs. order 2k for molecular dynamics, h = 0.5 fs and h = 1.0 fs.
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This dependence on k being even or odd arises because the construction of interpolated shadow Ham-

iltonians is somewhat different in these two cases. Nonetheless, the conservation of H[2k+4] is always supe-

rior to that of H[2k].

2.3. Smoothness needed

The fourth test problem has a one-dimensional C1 continuous piecewise potential,
Hðq; pÞ ¼ 1

2
p2 þ UðqÞ; UðqÞ ¼

1
2
q2; q 6 0;

0; 0 6 q 6 6;
1
2
ðq� 6Þ2; q P 6

8><
>:
with initial conditions q(0) = 0, pð0Þ ¼
ffiffiffi
8

p
.

As shown in [8, Figs. B.5 and B.6], the lack of smoothness in the piecewise potential has a clearly

deleterious effect on the conservation of interpolated shadow Hamiltonians. The limiting value of the
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fluctuations of these shadow Hamiltonians is much larger relative to the conservation of the actual energy

than for other, smoother potentials. With h = 0.05 and a duration of 10,000 time units, the energy has a

variation of about 0.0065 and this decreases for ISHs as the order increases leveling off at about 0.0041.

Larger step sizes yield ever smaller decreases in energy fluctuations.

The energy in these simulations appears to remain bounded for all time even though the mapUh has jumps
in its 1st derivative. An extension of the Moser twist theorem guarantees conservation of energy for maps

Uh 2 C‘ for ‘ > 3 [9]. This is conjectured to hold for ‘ > 2 and counterexamples are known for ‘ = 1.

The fifth test problem is a molecular dynamics simulation of water in which the switching distance for

Lennard-Jones potential is set to be just 4 Å, which is small enough that the potential is only C1 continuous.

This again has a harmful effect on the conservation of interpolated shadow Hamiltonians. In fact, for a

10 ps simulation with step size 0.25 fs the conservation of the 24th order interpolated shadow Hamiltonian

is �3.5 times worse than when Lennard-Jones potential is infinitely differentiable.

The cases of the C1 continuous piecewise quadratic potential given previously and molecular dynamics
with a switching distance of 4 Å stand alone among the potentials used in this study in that they are not

infinitely differentiable. Both highlight one of the benefits of the construction of interpolated shadow Ham-

iltonians, namely the independence of that construction from many of the details of the Hamiltonian

system to be solved.

2.4. Exponential convergence

Theoretically, the limiting value of the fluctuation range of the shadow Hamiltonian as a function of step
size h behaves as exp(�c/h) for some constant c. Fig. 4 plots the energy range for the 24th order interpolated

shadow Hamiltonian for a 100 ps simulation of water vs. 1/h for h = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5. This

agrees very well with theory until the roundoff error level is reached. With a step size h = 0.25 fs the inter-

polated shadow Hamiltonian varies only in the 13th decimal digit over the length of the simulation. That

this variation is due to roundoff error is suggested both by the very small magnitude of the fluctuations and

by the fact that the conservation of the interpolated shadow Hamiltonian actually becomes worse when the

step size is reduced from 0.25 to 0.125 fs. (The fluctuations are at the level of 15,000 U of roundoff error,

which is consistent with the error accumulation and the cancellation that might be expected. The fluctua-
tions for the double well potential are 400 U of roundoff and for Hénon–Heiles Hamiltonian 80 U.)

Similar results are obtained for the double well potential, but results for Hénon–Heiles Hamiltonian are

less convincing.
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Fig. 4. Conservation of 24th order ISH vs. 1/h for molecular dynamics.
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Fig. 5. Trajectory discrepancy vs. time for Hénon–Heiles TSH, h = 0.2.
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2.5. Trajectory accuracy

Another question of interest for shadow Hamiltonians is how well their trajectories track the numerical
trajectory. The truncated and interpolated forms of the shadow equations were solved to high accuracy 2

to produce trajectories associated with the two different types of shadow equations for Hénon–Heiles Ham-

iltonian with h = 0.2 for a time interval of 500 time units. These trajectories were compared to the numerical

trajectory calculated by the leapfrog method with a step size of 0.2 and evaluated according to the 2-norm

of the discrepancy between the numerical trajectory and the shadow Hamiltonian trajectory at each step

size, where the discrepancy is the difference between the two trajectories.

Fig. 5 shows the trajectory discrepancies as a function of time for the TSH for orders 2k = 2,4, . . . ,12 for

the leapfrog method with step size h = 0.2. The numerical trajectory fairly rapidly separates from trajectories
associated with the shadow equations, both interpolated and truncated. As expected, trajectories associated

with shadow equations of higher order track the numerical solution for a longer time than do trajectories

associated with shadow equations of lower orders, at least up to 12th order (the limit to which this study

was carried out). The relatively short time that solutions of the truncated shadow Hamiltonian system track

the numerical solution is in accord with the theory, which asserts the long-time conservation of the shadow

Hamiltonian but only a short-time agreement between numerical and shadow Hamiltonian trajectories.

For formulas of orders 2,4, . . . ,12 the trajectory discrepancy is always less for the truncated shadow

Hamiltonians rather than for the interpolated shadow Hamiltonians. This is shown in [8, Fig. 2.6], which
plots the trajectory discrepancies for the 12th order truncated and interpolated shadow Hamiltonians.
3. Applied studies

Observing the behavior of the shadow Hamiltonian is useful in selecting algorithms and their

parameters.
2 Integration was by the 4th order Runge–Kutta method with step size hRK = 0.00015625. An estimate of the error in the shadow

Hamiltonian trajectories was found by taking the 2-norm of 1/15th the difference between the trajectory calculated with a step size of

2hRK and the trajectory calculated with a step size of hRK. The estimated error in the shadow Hamiltonian trajectories is less than 5%

for both the truncated and interpolated equations over the entire length of the simulation.
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3.1. Step size

Here we examine normal behavior of the ISH time series for an MD water simulation for a variety of

step sizes.

Simulations of length 100 ps for step sizes of h ¼ 1
8
; 1
4
; 1
2
fs give values for the 24th order ISH whose

ranges in kcal/mol are 6.1 · 10�10, 4.8 · 10�10, and 5.2 · 10�10, respectively. Clearly these fluctuations

are the effect of roundoff error. For larger step sizes discrete jumps become evident. Fig. 6 shows a plot

of the 24th order ISH as a function of time for a 100 ps simulation for h = 1.0 fs. The behavior of the

24th order ISH becomes more ragged with a decided upward drift for yet larger step sizes. Fig. 7 shows

a plot of the 24th order ISH for a 1 ns simulation for h = 2.0 fs.

3.2. Drift in argon

Liquid argon is interesting for studying integrators because the atoms interact only through a single type

of pairwise potential representing both the van der Waals attraction and the hard core repulsion. See

Appendix A.1 for specific force field specifications.
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Fig. 6. 24th Order ISH for 100 ps water simulation, h = 1.0 fs.
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Fig. 8. 24th Order ISH for argon, h = 10 fs.
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Fig. 9. Minimum separation distance at each time step for argon.
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Fig. 8 shows the 24th ISH as a function of time for h = 10 fs for a system of 250 argon atoms at 106 K.

To show greater detail the vertical range was limited leaving the first 5 ps of simulation off the plot. Fig. 9

shows the minimum separation distance over all atom pairs at each time step for that same simulation. The

times in ps when the minimum separation distance drops below 3.0 Angstroms are 5, 22, 208, 358, 394, 415,

441. These correlate well with the times of jumps in the ISH.

3.3. Effect of restraints

Here we consider the effect of using one-sided harmonic restraints to contain the molecules of a water

simulation. One-sided restraints are much more typical for practical simulations than are the pure harmonic

restraints used for the tests elsewhere in this article, because one-sided restraints distort the physics only at

the boundaries. The one-sided restraint tested here is centered about the origin with the spherically symmet-

ric potential UBC equal to the sum over all i of terms
441
kBCðri � rBCÞm ð1Þ
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with ri the distance from the origin to the ith atom. This potential takes effect only outside a radius of rBC,

and is zero for all atoms inside this radius. In this study the values rBC = 21 Å, kBC = 1 kcal/mol/Å2, and

m = 2 are used. The value m = 2 corresponds to the customary one-sided harmonic potential.

Plotted in Fig. 10 is the 24th order interpolated shadow Hamiltonian as a function of time for a 50 ps

molecular dynamics simulation of water with step size h = 0.5 fs. Over the length of the simulation this sha-
dow Hamiltonian is well conserved, with the exception of occasional sudden and clearly delineated jumps.

In these instances the conservation of the interpolated shadow Hamiltonians is orders of magnitude worse

for a handful of time steps before settling back down into another well conserved regime. These jumps seem

to indicate some sort of event not apparent from plots of the energy or lower order interpolated shadow

Hamiltonians. Further investigation determines that the jumps coincide with collisions with the soft spher-

ical wall created by the restraints.

Accordingly, experiments were performed comparing m = 2 with higher values of m. The following table

shows the results for water with step size h = 1.0 fs. The top row is the exponent m used in the boundary
restraint and the bottom row is the range of the 24th order ISH:
m

F

2

-438.17095

-438.17090

-438.17085

-438.17080

-438.17075

-438.17070

-438.17065

-438.17060

-438.17055

-438.17050

-438.17045

0 5000

ig. 10. 24th order ISH
4

10000 15000 20000 25000

for 50 ps simulation of
6

30000 35000 40000 45000 50

water with C1 restraints
8

000

, h = 0.5 fs.
10

ISH range
 0.000991
 0.000084
 0.000024
 0.000032
 0.000032
Conservation is best from m = 6 up.

3.4. Multiple time stepping

‘‘Impulse’’ multiple time stepping (MTS), most commonly known as r-RESPA, is a generalization of the

leapfrog method which exploits a splitting of the potential U = Ufast + Uslow so that the more costly slow

part and its gradient is evaluated with a longer step size h. For example, if the fast part is evaluated twice

per step, one complete step is given by:
pnþ1=4 ¼ pn þ 1
4
hF n;

qnþ1=2 ¼ qn þ 1
2
hM�1pnþ1=4;
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F nþ1=2 ¼ �U fast;qðqnþ1=2Þ;

pnþ3=4 ¼ pnþ1=4 þ 1
2
hF nþ1=2;

qnþ1 ¼ qnþ1=2 þ 1
2
hM�1pnþ3=4;

F nþ1 ¼ �U fast;qðqnþ1Þ � 2U slow;qðqnþ1Þ;

pnþ1 ¼ pnþ3=4 þ 1
4
hF nþ1:
This integrator was tested on water with the fast part consisting of the bonded forces and the boundary

restraints and the slow part consisting of the nonbonded electrostatics and Lennard-Jones terms.
Tabulated below for a 100 ps simulation for three different (outer) step sizes h is the range of the 24th

ISH for MTS and for leapfrog:
h

2

1.0
 1.5
 2.0
ISH range for MTS
 0.000061
 0.022
 0.435
ISH range for leapfrog
 0.000068
 0.033
 0.977
Given below is a similar table but for the actual energy rather than the 24th ISH:
h
 1.0
 1.5
 2.0
Energy range for MTS
 2.022
 4.852
 8.858
Energy range for leapfrog
 5.716
 13.362
 24.981
The results validate the applicability of interpolated shadow Hamiltonians to (symplectic) MTS,

although, for the given splitting, they show only a modest improvement for MTS over leapfrog.
4. Interpolated shadow Hamiltonians

The process specified here for the construction of the interpolated shadow Hamiltonian is from [3]. Its

derivation assumes the existence of the shadow Hamiltonian.

4.1. Augmented integrator

For some given Hamiltonian H, let Uh be an integrator where one step of size h is the composition of
exact h-flows for Hamiltonians H1 + H2 +� � �+ HL = H. Assume that each Hamiltonian Hl(x) is sufficiently

smooth on some domain containing the infinite time trajectory. For instance, for a separable Hamiltonian

system with Hðq; pÞ ¼ 1
2
pTM�1p þ UðqÞ the leapfrog method has L = 3 and H 1ðxÞ ¼ 1

2
UðqÞ,

H 2ðxÞ ¼ 1
2
pTM�1p, and H 3ðxÞ ¼ 1

2
UðqÞ. Define the homogeneous extension of a Hamiltonian by
�Hðq; a; p; bÞ ¼def a2Hða�1q; a�1pÞ
and let y ¼def½qT; a; pT; b�T. Then, as shown in [3]
HðxðtÞÞ � 1 _yðtÞT�JyðtÞ;
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where y(t) is the solution for the homogeneous extension �HðyÞ of HðxÞ with a initially 1 and where �J is sim-

ilar to J but of augmented dimension. Define the augmented method yn+1 = Wh(y
n) for �H to be the com-

position of exact flows for systems with Hamiltonians �H 1; �H 2; . . . ; �HL where
�Hlðq; a; p; bÞ ¼
def

a2Hlða�1q; a�1pÞ:
For example, the augmented leapfrog method with a0 = 1 is given by:
pnþ1=2 ¼ pn þ h
2
F n;

bnþ1=2 ¼ bn þ h
2
ð�ðqnÞTF n � 2UnÞ;

qnþ1 ¼ qn þ hM�1pnþ1=2;

F nþ1 ¼ F ðqnþ1Þ;

pnþ1 ¼ pnþ1=2 þ h
2
F nþ1;

bnþ1 ¼ bnþ1=2 þ h
2
ð�ðqnþ1ÞTF nþ1 � 2Unþ1Þ:
Let Hh(q,p) be the shadow Hamiltonian of the original method Uh. Then it can be shown [3] that the aug-

mented method Wh has a shadow Hamiltonian
�Hhðq; a; p; bÞ ¼ a2Hhða�1q; a�1pÞ:

Furthermore, let the shadow Hamiltonians Hh and �Hh

have solutions xh(t) and yh(t), respectively. Then it is

shown in [3] that
HhðxhðtÞÞ � 1
2
_yhðtÞ

T�JyhðtÞ:
4.2. Construction of H[2k] for even k

The construction of H[2k](q,p) for even values of k follows. See [3] for odd values of k. Given a shadow

extended Hamiltonian system with initial condition yh(0) = [qT,1,pT,0]T, let yh(t) be its solution with values

yhðjhÞ ¼ Wj
hðyhð0ÞÞ; j ¼ 0;�1; . . . ;�k=2. Let pk(t) be the degree k polynomial interpolant of these k + 1 val-

ues. Following the approach of [3], let:
Hk;j ¼
def 1

jh

Z jh=2

�jh=2

1

2
_pkðtÞTJpkðtÞdt; j ¼ 2; 4; . . . ; k:
As shown in [3], this has an expansion
Hk;j ¼ Hh þ cj1h
kþ2 _cð0Þ þ cj3h

kþ4 c
...ð0Þ þ � � � þ Oðh2kþ2Þ;
where
cðtÞ ¼def 1
2
_yhðtÞ

T�Jy½kþ1�
h ðtÞ
with the brackets denoting a (k + 1)th divided difference, namely, y ½kþ1�
h ðtÞ ¼def yh½� 1

2
kh; . . . ; 1

2
kh; t�. As in [3],

the first k/2 � 1 leading error terms can be eliminated by forming a suitable linear combination of the Hk,j,

j = 1,2, . . . ,k/2, to yield
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H ½2k� ¼def some linear combination of the Hk;j ¼ Hh þ Oðh2kÞ:
The coefficients of these linear combinations are given in Appendix B. A concrete example for the case of

k = 4 is
H ½8�ðxÞ ¼ 16
21
H 4;2 þ 5

21
H 4;4 ¼ HhðxÞ þ Oðh8Þ:
5. A better implementation

Shadow Hamiltonians up through order 24 have been obtained and are given in Appendix B. Previously

[3], only shadow Hamiltonians up through order 8 had been obtained. With the use of higher order formu-

las it is all the more important that the required differences be calculated with optimal storage efficiency and
with minimal roundoff error.

In practice, implementation of interpolated shadow Hamiltonians H[2k] for odd k is unnecessary when

the goal is to obtain the formulas with highest order accuracy possible, which, as this article indicates, ex-

hibit the best conservation behavior. Implementation of only the even k case is sufficient for this purpose,

and has the advantage that extra work needed to compute differences of midstep quantities is avoided. For

this reason the following discussion is limited to the case of even k.

5.1. Backward difference derivation for even k

This section presents formulas for H[2k] for even values of k. See [8] for odd values of k. Let aj be the jth

backward difference of yh(t) at t = (k/2)h
aj ¼ rjyhððk=2ÞhÞ; j ¼ 0; 1; 2; . . . ; k;
where the backward difference is defined by $kw(t) = $k� 1w(t) � $k� 1w(t � h), $0w(t) = w(t). Taking the
case k = 4 as an example, the fourth degree Newton interpolant using backward differences is
p4ðtÞ ¼ yhð2hÞ þ ðt � 2hÞryhð2hÞ
h

þ ðt � 2hÞðt � hÞr
2yhð2hÞ
2h2

þ tðt � 2hÞðt � hÞr
3yhð2hÞ
6h3

þ tðt � 2hÞðt2 � h2Þr
4yhð2hÞ
24h4

:

Hence
p4ðshÞ ¼ a0 þ ðs� 2Þa1 þ 1
2
ðs� 2Þðs� 1Þa2 þ 1

6
sðs� 2Þðs� 1Þa3 þ 1

24
sðs� 2Þðs2 � 1Þa4
and
h _p4ðshÞ ¼ a1 þ s� 3
2

� �
a2 þ 1

2
s2 � sþ 1

3

� �
a3 þ 1

2
1
3
s3 � 1

2
s2 � 1

6
sþ 1

6

� �
a4:
Define Aij ¼ aTi �Jaj=ð2hÞ. Using the facts that Aii = 0 and Aij = �Aji, this yields
1
2
_p4ðshÞT�Jp4ðshÞ ¼ A10 � 3

2
A20 þ 2þ 1

2
s2

� �
A21 þ 1

3
þ 1

2
s2

� �
A30 � 2

3
þ 3

2
s2

� �
A31 þ 1

3
þ 13

12
s2 þ 1

12
s4

� �
A32

þ 1
12
� 1

4
s2

� �
A40 þ �1

6
þ 11

24
s2 þ 1

8
s4

� �
A41 þ 1

12
� 11

48
s2 � 11

48
s4

� �
A42

þ 1
36
s2 þ 13

144
s4 þ 1

144
s6

� �
A43 þ odd powers of s:
Average over �1 6 s 6 1 to obtain H4,2 and over �2 6 s 6 2 to obtain H4,4, as
H 4;2 ¼
1

2

Z 1

�1

1

2
_p4ðshÞT�Jp4ðshÞds and H 4;4 ¼

1

4

Z 2

�2

1

2
_p4ðshÞT�Jp4ðshÞds:
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From this one finds
H ½8� ¼ 16
21
H 4;2 þ 5

21
H 4;4 ¼ A10 � 3

2
A20 þ 16

7
A21 þ 13

21
A30 � 32

21
A31 þ 36

35
A32 � 5

84
A40 þ 22

105
A41 � 9

35
A42 þ 4

35
A43:
This and other formulas in terms of the Aij for H[2k] with k even can be found in Appendix B.

5.2. Storage considerations

The efficiency of the construction of interpolated shadow Hamiltonians as presented in [3] and reviewed

in Section 4 derives from the fact that the interpolated shadow Hamiltonians H[2k] are built from consec-

utive solution values yn� k/2, yn� k/2 + 1, . . . ,yn+ k/2� 1,yn+ k/2, values which are already being calculated by the

simulation. Differences of these values are formed that represent the interpolants, and these differences are

used to construct the interpolated shadow Hamiltonians. The introduction of these differences of solution
values requires additional storage beyond what is necessary for the simulation alone, because these differ-

ences must be stored. The scheme given in [3] employs centered differences. However, the use of backward

differences, as presented here, results in significant savings in storage costs. Consider the difference tables up

to fourth order differences, which are required for calculating H[8], for both centered and backward differ-

ences. The centered difference table is
d0yhðt � 2hÞ
d1yhðt � 3

2
hÞ

d0yhðt � hÞ d2yhðt � hÞ
d1yhðt � 1

2
hÞ d3yhðt � 1

2
hÞ

d0yhðtÞ d2yhðtÞ d4yhðtÞ

d1yhðt þ 1
2
hÞ d3yhðt þ 1

2
hÞ

d0yhðt þ hÞ d2yhðt þ hÞ
d1yhðt þ 3

2
hÞ

d0yhðt þ 2hÞ
The backward difference table is
r0yhðt � 2hÞ
r1yhðt � hÞ

r0yhðt � hÞ r2yhðtÞ
r1yhðtÞ r3yhðt þ hÞ

r0yhðtÞ r2yhðt þ hÞ r4yhðt þ 2hÞ

r1yhðt þ hÞ r3yhðt þ 2hÞ

r0yhðt þ hÞ r2yhðt þ 2hÞ

r1yhðt þ 2hÞ

r0yhðt þ 2hÞ
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Formulas for the interpolated shadow Hamiltonians are in terms of the doubly underlined values. How-

ever, for purposes of calculating these doubly underlined values, both these and the singly underlined values

must be stored. Thus, to compute H[8] using centered differences, eleven sets of values must be stored in

addition to the storage already required for the simulation, while to compute H[8] using backward differ-

ences only 4 additional sets of values must be stored. The 0th difference yh(t + 2h) is ‘‘free’’, since this
consists of the current values of q, p, and b.

Assuming k is even, the centered difference table requires extra storage of
Pk=2

i¼1ð2iþ 2Þ ¼ 1
4
k2 þ 3

2
k vectors,

while the backward difference table requires extra storage of only k. The savings are especially significant for

systems with a large number of configurational degrees of freedom and for high order shadow Hamiltonians.

5.3. Rounding error considerations

Using leapfrog integration, the key backward differences of full step quantities from which higher order
differences are calculated are as follows: $qn+1 = hM�1pn+1/2, $2qn+1 = h2M�1Fn, calculated before the

leapfrog force update; an = 1, $ian = 0 for iP 0 which need neither be stored nor computed;

rpnþ1 ¼ 1
2
hðF nþ1 þ F nÞ, which can be calculated during the leapfrog force update so that new and old force

values are available; and rbnþ1 ¼ 1
2
hð�ðqnÞTF n � 2Un � ðqnþ1ÞTF nþ1 � 2Unþ1Þ, the first part of which may

be calculated before the leapfrog position update using the values qn, Fn, Un and the second part of which

may be calculated after the leapfrog force update using the values qn+1, Fn+1, Un+1.

Using the preceding expressions, the first and second order backward differences of key full step simu-

lation quantities are found analytically, rather than numerically. Directly calculating low order differences
avoids harmful cancellation, thus avoiding unnecessary rounding error.

As before, let k determine the maximum order of shadow Hamiltonian H[2k] to be computed. A new row

of the backward difference table consists of the values
riynþ1 ¼ ðriqnþ1ÞT;rianþ1; ðripnþ1ÞT;ribnþ1
h iT

; i ¼ 0; 1; . . . ; k:
Presented in the context of a single step of the leapfrog method these updates take place as follows:
r2qnþ1 ¼ h2M�1F n and riqnþ1 ¼ ri�1qnþ1 �ri�1qn; i ¼ 3; 4; . . . ; k;

rqnþ1 ¼ rqn þr2qnþ1;

qnþ1 ¼ qn þrqnþ1;

rpnþ1
half ¼ 1

2
hF n;

rbn
half ¼

h
2
ð�ðqnÞTF n � 2UnÞ;

F nþ1 ¼ F ðqnþ1Þ;

rpnþ1 ¼ rpnþ1
half þ 1

2
hF nþ1 and ripnþ1 ¼ ri�1pnþ1 �ri�1pn; i ¼ 2; 3; . . . ; k;

rbnþ1 ¼ rbn
half þ

h
2
ð�ðqnþ1ÞTF nþ1 � 2Unþ1Þ and ribnþ1 ¼ ri�1bnþ1 �ri�1bn; i ¼ 2; 3; . . . ; k;

pnþ1 ¼ 1
Mrqnþ1 þ h

F nþ1:

h 2
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Only differences of b, not b itself, need to be computed, since only these are necessary to calculate interpo-

lated shadow Hamiltonian formulas. This is the case because all differences of a of first order and above are

zero, so terms involving 0th order differences of b drop out.

As constructed, the interpolated shadow Hamiltonians are defined by linear combinations of Aij terms.

As the order of interpolated shadow Hamiltonians increases, these formulas quickly become very long and
impractical to code by hand. Instead, the coefficients of the Aij terms in the various H[2k] equations can be

stored in arrays initialized before integration begins and then referenced as needed, simplifying the expan-

sion to higher values of k. See, for example, the code for a Hamiltonian solver in [8, Appendix B], which is

available electronically from: http://bionum.cs.purdue.edu/hamiltonian.
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Appendix A. Molecular dynamics details

For molecular dynamics of a system of N atoms, the coordinate vectors q and p are each of length 3N

and the mass matrix is diagonal with each atom mass replicated 3 times.
Molecular dynamics results are obtained using a modified version of a program 3 compatible with

NAMD [10] but limited in scope to enable simpler modification. Interpolated shadow Hamiltonian code

was added to this program by the first author.

A.1. Argon

The system studied consists of 250 argon atoms which interact via a nonbonded force between all atom

pairs and which are spherically restrained by an artificial harmonic force. The mass of an argon atom is
39.948 amu.

The potential can be expressed as the sum of nonbonded terms and boundary restraints, where in this

study the nonbonded potential is Lennard–Jones potential ULJ(q).

The atoms are restrained to a sphere centered about the origin with the spherically symmetric potential

UBC equal to the sum over all i of terms kBCr2i , with ri the distance from the origin to the ith atom. In this

study the value kBC ¼ 4
441

kcal=mol=Å
2
is used to give energy equal to that of the usual one-sided quadratic

restraints given by Eq. (1) at a distance of about 23 Å. The use of pure harmonic restraints rather than one-

sided harmonic restraints avoids unnecessary nonsmoothness.
Lennard-Jones potential exists between all pairs of atoms, with ULJ equal to the sum, over all (i,j)-pairs,

of terms
3 C

Avenu
Emin

Rmin

rij

� �12

� 2
Rmin

rij

� �6
" #

: ðA:1Þ
redit: David J. Hardy, Department of Computer Science and Beckman Institute, University of Illinois, 405 North Mathews

e, Urbana, IL 61801-2987 (dhardy@ks.uiuc.edu).

http://bionum.cs.purdue.edu/hamiltonian
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The minimum value of the potential �Emin and the equilibrium separation distance Rmin depend on the

atom types involved in the interaction. For argon–argon interactions, Emin = 0.2385 kcal/mol and Rmin =

3.4050 Å. Commonly in molecular dynamics simulations Lennard-Jones potential is taken to be zero

outside a given cutoff distance rc. To achieve a smooth transition, a switching function is applied to the po-

tential before the cutoff distance but outside some switching distance rs, so that in this range the contribu-

tion of each intermolecular (i,j)-pair towards the total ULJ becomes
Emin

Rmin

rij

� �12

� 2
Rmin

rij

� �6
" #

ðr2c � r2ijÞ
2ðr2c þ 2r2ij � 3r2s Þ
ðr2c � r2s Þ

3

" #
for rs 6 rij 6 rc:
The use of this switching function results in a C1 continuous Lennard-Jones potential. However, in this

study the switching distance was chosen large enough that no switching would ever take place, due to

the imposed spherical boundary restraints. Lennard-Jones potential, therefore, remains infinitely differen-

tiable. The one exception occurs in Section 2.3, in which results from molecular dynamics with rs = 4 Å,

rc = 100 Å are discussed.
Initial conditions are obtained by using NAMD to equilibrate to a temperature of 106 K.
A.2. Water

The system studied consists of 125 water molecules whose atoms interact via two bonded forces, acting

between and among atoms within the same molecule, and two nonbonded forces, acting between all inter-

molecular atom pairs. Also the atoms are spherically restrained by an artificial harmonic force. The mass of

a hydrogen atom is 1.0080 amu and that of an oxygen atom is 15.9994 amu.
The potential can be expressed as the sum of bonded terms, nonbonded terms, and boundary restraints,

where in this study the bonded potentials are bond stretching and angle bending and the nonbonded poten-

tials are Lennard-Jones potential and the electrostatic potential, so that
UðqÞ ¼ UBCðqÞ þ UbondðqÞ þ U angleðqÞ þ ULJðqÞ þ U elecðqÞ:

The atoms are restrained by the same boundary potential as the argon system.

The first bonded potential, the spring bond, is a 2-body interaction between pairs of covalently bonded

atoms, with Ubond equal to the sum, over all such (i,j)-pairs, of terms kb(rij � r0)
2, with rij the separation

distance of the two atoms. For the case of hydrogen–oxygen interactions, the coefficient kb = 450 kcal/

mol/Å2 and the equilibrium distance r0 = 0.957 Å.

The angle potential is a 3-body interaction between a consecutively bonded triples of atoms, with

Uangle equal to the sum, over all such (i,j,k)-triples, of terms kh(h � h0)
2, with h the angle in radians

between the vector pointing from atom j to atom i and the vector pointing from atom j to atom k.

For the case of water molecules, the coefficient kh = 55 kcal/mol/rad2 and the equilibrium angle

h0 = 1.8242 rad.

Lennard-Jones potential exists between all intermolecular pairs of atoms, with ULJ equal to the sum,
over all intermolecular (i,j)-pairs, of terms given by Eq. (A.1) where Emin = 0.046 kcal/mol and Rmin =

0.449 Å for hydrogen–hydrogen interactions, Emin = 0.0836 kcal/mol and Rmin = 1.9927 Å for hydro-

gen–oxygen interactions, and Emin = 0.1521 kcal/mol and Rmin = 3.5364 Å for oxygen–oxygen

interactions.

The electrostatic potential Uelec equals the sum, over all intermolecular atom (i,j)-pairs, of terms
CZiZj

e0rij
;
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where the quantities Zi and Zj are the charges of atom i and atom j, respectively. Atom charges, in units of

electron charge, are 0.417 e for hydrogen and �0.834 e for oxygen bound in water molecules. The coeffi-

cient C = 332.0636 kcal Å/mol/e2 is Coulomb�s constant. The dielectric constant used is e0 = 1. As with Len-

nard-Jones potential, the electrostatic potential can be taken to be zero beyond the cutoff distance rc with a

switching function applied to the potential inside this distance, so that the contribution to Uelec from each
intermolecular (i,j)-pair of atoms becomes
CZiZj

e0rij
1�

r2ij
r2c

 !2

for 0 < rij 6 rc:
This results in a C1 continuous electrostatic potential. However, in this study a cutoff rc = 100 Å was

chosen so that it would never be reached, thus maintaining an infinitely differentiable electrostatic

potential.

Initial conditions are randomly generated by NAMD for a system at 300 K.
Appendix B. Interpolated shadow Hamiltonians up to order 24

The following formulas for shadow Hamiltonians up through order 24 are obtained using

Mathematica:
H ½2� ¼ H 1;1;

H ½4� ¼ H 2;2;

H ½6� ¼ 9
20
H 3;1 þ 11

20
H 3;3;

H ½8� ¼ 16
21
H 4;2 þ 5

21
H 4;4;

H ½10� ¼ 50
189
H 5;1 þ 325

504
H 5;3 þ 137

1512
H 5;5;

H ½12� ¼ 25
44
H 6;2 þ 2

5
H 6;4 þ 7

220
H 6;6;

H ½14� ¼ 1225
6864

H 7;1 þ 6909
11440

H 7;3 þ 1421
6864

H 7;5 þ 11
1040

H 7;7;

H ½16� ¼ 1568
3575

H 8;2 þ 14896
32175

H 8;4 þ 7136
75075

H 8;6 þ 761
225225

H 8;8;

H ½18� ¼ 7938
60775

H 9;1 þ 32634
60775

H 9;3 þ 1458
5005

H 9;5 þ 2997
74800

H 9;7 þ 7129
6806800

H 9;9;

H ½20� ¼ 1470
4199

H 10;2 þ 13920
29393

H 10;4 þ 37665
235144

H 10;6 þ 4190
264537

H 10;8 þ 671
2116296

H 10;10;

H ½22� ¼ 847
8398

H 11;1 þ 194205
411502

H 11;3 þ 2247575
6584032

H 11;5 þ 119185
1493856

H 11;7 þ 588181
98760480

H 11;9 þ 83711
888844320

H 11;11;

H ½24� ¼ 104544
364021

H 12;2 þ 669735
1456084

H 12;4 þ 233530
1092063

H 12;6 þ 67034
1820105

H 12;8 þ 8614
4004231

H 12;10 þ 6617
240253860

H 12;12;
Below, these formulas are expressed in terms of backward differences of numerical solution values for even

values of k. See [8] for odd values of k.
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H ½4� ¼ A1;0 � 1
2
A2;0 þ 2

3
A2;1;

H ½8� ¼ A1;0 � 3
2
A2;0 þ 16

7
A2;1 þ 13

21
A3;0 � 32

21
A3;1 þ 36

35
A3;2 � 5

84
A4;0 þ 22

105
A4;1 � 9

35
A4;2 þ 4

35
A4;3;

H ½12� ¼ A1;0 � 5
2
A2;0 þ 54

11
A2;1 þ 74

33
A3;0 � 72

11
A3;1 þ 125

22
A3;2 � 19

22
A4;0 þ 141

44
A4;1 � 375

88
A4;2 þ 500

231
A4;3 þ 29

220
A5;0 � 3

5
A5;1

þ 325
308
A5;2 � 200

231
A5;3 þ 45

154
A5;4 � 7

1320
A6;0 þ 137

4620
A6;1 � 125

1848
A6;2 þ 5

63
A6;3 � 15

308
A6;4 þ 1

77
A6;5;

H ½16� ¼ A1;0 � 7
2
A2;0 þ 128

15
A2;1 þ 73

15
A3;0 � 256

15
A3;1 þ 10976

585
A3;2 � 41

12
A4;0 þ 1712

117
A4;1 � 2744

117
A4;2 þ 10976

715
A4;3 þ 743

585
A5;0

� 3712
585

A5;1 þ 406112
32175

A5;2 � 43904
3575

A5;3 þ 6860
1287

A5;4 � 31
130
A6;0 þ 4896

3575
A6;1 � 104272

32175
A6;2 þ 128968

32175
A6;3 � 3430

1287
A6;4

þ 3136
3861

A6;5 þ 37
1925

A7;0 � 28544
225225

A7;1 þ 11368
32175

A7;2 � 1568
2925

A7;3 þ 140
297
A7;4 � 896

3861
A7;5 þ 112

2145
A7;6 � 761

1801800
A8;0

þ 22
6825

A8;1 � 343
32175

A8;2 þ 1918
96525

A8;3 � 175
7722

A8;4 þ 28
1755

A8;5 � 14
2145

A8;6 þ 8
6435

A8;7;

H½20� ¼ A1;0 � 9
2
A2;0 þ 250

19
A2;1 þ 484

57
A3;0 � 2000

57
A3;1 þ 30375

646
A3;2 � 497

57
A4;0 þ 167125

3876
A4;1 � 212625

2584
A4;2 þ 21600

323
A4;3

þ 34167
6460

A5;0 � 9625
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A5;1 þ 88695
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A5;3 þ 185220
4199

A5;4 � 14917
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A6;0 þ 46975
3876

A6;1 � 83025
2584

A6;2

þ 192600
4199

A6;3 � 154350
4199

A6;4 þ 666792
46189

A6;5 þ 2761
6783

A7;0 � 19300
6783

A7;1 þ 501525
58786

A7;2 � 417600
29393

A7;3 þ 652680
46189

A7;4

� 381024
46189

A7;5 þ 110250
46189

A7;6 � 831
18088

A8;0 þ 4925
13832

A8;1 � 564975
470288

A8;2 þ 43740
19019

A8;3 � 6615
2431

A8;4 þ 186543
92378

A8;5

� 165375
184756

A8;6 þ 9000
46189

A8;7 þ 4861
2116296

A9;0 � 10475
529074

A9;1 þ 14985
198968

A9;2 � 53520
323323

A9;3 þ 21315
92378

A9;4 � 882
4199

A9;5

þ 875
7106

A9;6 � 2000
46189

A9;7 þ 675
92378

A9;8 � 671
21162960

A10;0 þ 7129
23279256

A10;1 � 6849
5173168

A10;2 þ 99
29393

A10;3 � 1029
184756

A10;4

þ 2877
461890

A10;5 � 875
184756

A10;6 þ 10
4199

A10;7 � 135
184756

A10;8 þ 5
46189

A10;9;

H½24� ¼ A1;0 � 11
2
A2;0 þ 432

23
A2;1 þ 905

69
A3;0 � 1440

23
A3;1 þ 15972

161
A3;2 � 1635

92
A4;0 þ 702

7
A4;1 � 35937

161
A4;2 þ 665500

3059
A4;3

þ 12126
805

A5;0 � 76896
805

A5;1 þ 3865224
15295

A5;2 � 1064800
3059

A5;3 þ 24257475
104006

A5;4 � 953
115
A6;0 þ 126376

2185
A6;1 � 378004

2185
A6;2

þ 6355525
22287

A6;3 � 8085825
29716

A6;4 þ 6899904
52003

A6;5 þ 45454
15295

A7;0 � 345888
15295

A7;1 þ 19489833
260015

A7;2 � 7320500
52003

A7;3

þ 118053045
728042

A7;4 � 41399424
364021

A7;5 þ 4024944
96577

A7;6 � 8315
12236

A8;0 þ 1168245
208012

A8;1 � 8509083
416024

A8;2 þ 62523725
1456084

A8;3

� 331518825
5824336

A8;4 þ 230715540
4732273

A8;5 � 2515590
96577

A8;6 þ 705672
96577

A8;7 þ 176005
1872108

A9;0 � 131564
156009

A9;1 þ 3674891
1092063

A9;2

� 25688300
3276189

A9;3 þ 222509925
18929092

A9;4 � 55582560
4732273

A9;5 þ 752136
96577

A9;6 � 313632
96577

A9;7 þ 136125
193154

A9;8 � 2339
328440

A10;0

þ 126393
1820105

A10;1 � 1106061
3640210

A10;2 þ 1311035
1670214

A10;3 � 50132115
37858184

A10;4 þ 2117016
1391845

A10;5 � 30492
25415

A10;6 þ 307098
482885

A10;7

� 81675
386308

A10;8 þ 24200
676039

A10;9 þ 58301
240253860

A11;0 � 51684
20021155

A11;1 þ 588181
47322730

A11;2 � 506990
14196819

A11;3

þ 98901
1456084

A11;4 � 2119392
23661365

A11;5 þ 40194
482885

A11;6 � 26136
482885

A11;7 þ 2475
104006

A11;8 � 4400
676039

A11;9 þ 594
676039

A11;10

� 6617
2883046320

A12;0 þ 83711
3123300180

A12;1 � 81191
567872760

A12;2 þ 78419
170361828

A12;3 � 75339
75716368

A12;4 þ 35937
23661365

A12;5

� 1617
965770

A12;6 þ 4521
3380195

A12;7 � 4125
5408312

A12;8 þ 605
2028117

A12;9 � 99
1352078

A12;10 þ 6
676039

A12;11:
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